1. A particle P moves on a straight line that contains the point O . At time t seconds the displacement of P from O is s metres, where $s=t^{3}-3 t+3$.
(a) Determine the times when the particle has zero velocity.
(b) Find the distances of P from O at the times when it has zero velocity.
2. In this question you must show detailed reasoning.

A boy plays on a path that runs north-south through an origin O . His displacement x metres north of O at time t seconds is given by

$$
x=-0.7 t^{2}+4 t \text { for } 0 \leq t \leq 10 .
$$

(a) Determine the direction in which he is moving when $t=7$.
(b) Find the furthest distance from O reached by the boy for $0 \leq t \leq 10$.
3. A car travels along a straight track for 5 seconds. Its displacement s metres after t seconds is given by

$$
s=3 t+0.1 t^{3}
$$

Show that the car does not have constant acceleration.
4. In this question you must show detailed reasoning.

Fig. 6 shows the velocity-time graph for a car as it travels along a straight road. The car sets off from some traffic lights and stops momentarily at a road junction. The velocity $v \mathrm{~ms}^{-1}$ of the car at time $t s$ after leaving the traffic lights is modelled by

$$
v=0.025 t^{3}-0.8 t+6.4 t \text { for } 0 \leq t \leq 20 .
$$

Fig. 6
Calculate the distance from the traffic lights to the road junction.
5. The velocity of a car, $\mathrm{v} \mathrm{ms}^{-1}$ at time t seconds, is being modelled. Initially the car has velocity $5 \mathrm{~ms}^{-1}$ and it accelerates to $11.4 \mathrm{~ms}^{-1}$ in 4 seconds.

In model A, the acceleration is assumed to be uniform.
(a) Find an expression for the velocity of the car at time t using this model.
(b) Explain why this model is not appropriate in the long term.

Model A is refined so that the velocity remains constant once the car reaches $17.8 \mathrm{~ms}^{-1}$.
(c) Sketch a velocity-time graph for the motion of the car, making clear the time at which
the acceleration changes.
(d) Calculate the displacement of the car in the first 20 seconds according to this refined model.

In model B, the velocity of the car is given by

$$
v= \begin{cases}5+0.6 t^{2}-0.05 t^{3} & \text { for } 0 \leqslant t \leqslant 8 \\ 17.8 & \text { for } 8<t \leqslant 20\end{cases}
$$

(e) Show that this model gives an appropriate value for v when $t=4$.
(f) Explain why the value of the acceleration immediately before the velocity becomes constant is likely to mean that model B is a better model than model A.
(g) Show that model B gives the same value as model A for the displacement at time 20 S.
6. In a laboratory experiment, the motion of a small object moving in a straight line is being studied. A model for its velocity $v \mathrm{~m} \mathrm{~s}^{-1}$ at time $t \mathrm{~s}$ is given by

$$
v=a t^{4}+b t^{3},
$$

where a and b are constants and $t>0$.
The velocity has maximum value of $0.1 \mathrm{~m} \mathrm{~s}^{-1}$ when $t=1$.
(a) Determine the values of a and b.
(b) Find the time at which the particle changes direction.
(c) Explain why the model would not be suitable for very large values of t.
7. Fig. 8 shows the velocity-time graph of a car that is travelling in a straight line as it manoeuvres then drives away. Its velocity ms^{-1} at time t s is given by $v=0.1 t^{\beta}+0.9 t-1$.

Fig. 8
(a) Describe two features of the motion of the car in the first 4 seconds.
(b) In this question you must show detailed reasoning.

Calculate the total distance travelled in the first 4 seconds.
(c) Find an expression for the acceleration of the car in terms of t.

Mark scheme

Question		Answer/Indicative content	Marks	Guidance
1	a	Velocity $v i \frac{\mathrm{~d} s}{\mathrm{~d} t}=3 t^{2}-6 t$ $t=0 \text { or } 2$	M1 (AO1.1a) M1 (AO1.1) A1(AO1.1) [3]	Attempt to find $\frac{\mathrm{d} s}{\mathrm{~d} t}$ $\frac{\mathrm{d} s}{\mathrm{~d} t}=0 \text { must be }$ stated Both roots found
	b	$s(0)=3 \text { so distance } 3 \mathrm{~m}$ $s(2)=8-12+3=-1$ so distance is 1 m	A1(AO1.1) A1(AO3.4) [2]	Accept seeing 3 without comment -1 for s must be seen as well as 1 m for distance
		Total	5	
2	a	DR $v=-0.7 \times 2 t+4$ When $t=7, v=-5.8$ Boy is moving due south since v is negative	M1(AO 3.1b) M1 (AO 3.4) E1(AO 2.2a)	For attempt to differentiate For substitution in their v

					Must consider to $t=20$ Examiner's Comments Many candidates realised that the distan distance travelled in the first 8s. It would integral with its limits and use a calculato to give a full solution with the substitution candidates omitted the part of the journey	Calculus in Kinematics was the definite integral that gave the e been sufficient to clearly write the evaluate it. Most candidates decided limits made clear. Only a few eyond 8 s .
			Total	17		
6			$\begin{aligned} & v=0.1 \text { when } t=1 \text { gives } a+b=0.1 \\ & \frac{\mathrm{~d} v}{\mathrm{~d} t}=4 a t^{3}+3 b t^{2} \end{aligned}$ Maximum v when $t=1$ gives $4 a+3 b=0$ Solving simultaneous equation for a and b $a=-0.3 \text { and } b=0.4$	M1 (AO 3.3) M1 (AO 3.1b) M1 (AO 3.3) M1 (AO 1.1a) A1 (AO 1.1) [5]	Using given information to find an equation linking a and b Equating the derivative to zero to find an equation linking a and b Method may be implied, e.g. if BC cao	

		b	Changes direction when $v=0$, so $-0.3 t^{\dagger}+0.4 \beta^{\beta}=0 \Rightarrow 0.3 t^{\dagger} \Rightarrow 0.4 t^{\beta} \Rightarrow t=\frac{4}{3}(\text { as } t>0)$ Particle changes direction when $t=\frac{4}{3}$	M1 (AO 3.4) A1 (AO 1.1) [2]	For equating v to 0 and solving for t (may be $B C$); ignore any inclusion of $t=0$ at this point cao	Calculus in Kinematics
		c	Model is not suitable for large values of t as the object's velocity would increase without limit	B1 (AO 3.5b) [1]	oe, e.g. 'velocity gets very large'	
			Total	8		
7		a	Two valid comments, e.g.: The car's direction of motion changes from negative to positive [at time $t=1$] The initial speed of the car is $1 \mathrm{~m} \mathrm{~s}^{-1}$ [in the negative direction] After 1 s the car is momentarily stationary The car accelerates [in the positive direction] reaching a speed of $19.8 \mathrm{~m} \mathrm{~s}^{-1}$ [after 4 seconds]	B1 (AO 2.2a) B1 (AO 2.2a) [2]	For a comment involving the change of direction For any essentially different sensible comment about the motion	

		b	DR Consideration of two separate phases of the motion $s=\int\left(0.1 t^{\beta}+0.9 t^{2}-1\right) \mathrm{d} t=0.025 t^{4}+0.3 t^{\beta}-t(+c)$ For 1st second: $s=\left(0.025 \times 1^{4}+0.3 \times 1^{3}-1\right)-0=-0.675$ For the next three seconds: $\begin{aligned} & s=\left(0.025 \times 4^{4}+0.3 \times 4^{3}-4\right)-(-0.675) \\ & =22.275 \end{aligned}$ Total distance $=22.275+0.675=22.95 \mathrm{~m}$	M1 (AO 3.1b) M1 (AO 1.1a) A1 (AO 1.1b) M1 (AO 1.1a) B1 (AO 1.1b) [5]	May be implied Attempt to integrate the terms is needed Correct indefinite integration (may be seen as working for a definite integral) For substitution of limits, oe Allow for correct answer seen, www	Calculus in Kinematics $+c$ not required here Allow this mark for limits 0 and 4
		c	$a=\frac{\mathrm{d} v}{\mathrm{~d} t}=0.3 t^{2}+1.8 t$	M1 (AO 1.1a) A1 (AO 1.1b) [2]	Attempt to differentiate cao	
			Total	9		

